Thai National Parks

Reptiles of Thailand

Species of Thailand

Olive ridley sea turtle

Thai: เตาหญาตาแดง (Dtao ya ta daeng)

Binomial name: Lepidochelys olivacea, Johann Friedrich von Eschscholtz, 1829

The olive ridley sea turtle (Lepidochelys olivacea), also known as the Pacific ridley sea turtle, is a medium-sized species of sea turtle found in warm and tropical waters, primarily in the Pacific and Indian Oceans.

Description

The olive ridley is a small sea turtle, with an adult carapace length averaging 60 to 70 cm. The heart-shaped carapace is characterized by four pairs of pore-bearing inframarginal scutes on the bridge, two pairs of prefrontals, and up to 9 lateral scutes per side. Olive ridleys are unique in that they can have variable and asymmetrical lateral scute 6 to 8 counts ranging from five to 9 plates on each side, with six to eight being most commonly observed. Each side of the carapace has 12–14 marginal scutes.

The carapace is flattened dorsally and highest anterior to the bridge. It has a medium–sized, broad head that appears triangular from above. The head's concave sides are most obvious on the upper part of the short snout. It has paddle-like forelimbs, each having two anterior claws. The upperparts are grayish green to olive in color, but sometimes appear reddish due to algae growing on the carapace. The bridge and hingeless plastron of an adult varies from greenish white in younger individuals to a creamy yellow in older specimens.

Hatchlings are dark gray with a pale yolk scar, but appear all black when wet. Carapace length ranges from 37 to 50 mm. A thin, white line borders the carapace, as well as the trailing edge of the fore and hind flippers. Both hatchlings and juveniles have serrated posterior marginal scutes, which become smooth with age. Juveniles also have three dorsal keels; the central longitudinal keel gives younger turtles a serrated profile, which remains until sexual maturity is reached.

Olive ridleys rarely weigh over 50 kg (110 lb). A study in Oaxaca, Mexico, reported a sample of adults ranged from 25 to 46 kg; adult females weighed an average of 35.45 kg (n=58), while adult males weighed significantly less, averaging 33.00 kg (n=17). Hatchlings usually weigh between 12.0 and 23.3 g.

Adults are somewhat sexually dimorphic. Mature males have longer and thicker tails, which are used for copulation, and the presence of enlarged and hooked claws on the males' front flippers allow them to grasp the female carapace during copulation. Males also have longer, more tapered carapaces than females, which have round, dome-like carapaces. Males also have more concave plastrons, believed to be another adaptation for mating. The plastrons of males may also be softer than females.

Distribution

The olive ridley turtle has a circumtropical distribution, living in tropical and warm waters of the Pacific and Indian Oceans from India, Arabia, Japan, and Micronesia south to southern Africa, Australia, and New Zealand. In the Atlantic Ocean, it has been observed off the western coast of Africa and the coasts of northern Brazil, Suriname, Guyana, French Guiana, and Venezuela. Additionally, the olive ridley has been recorded in the Caribbean Sea as far north as Puerto Rico. It is also found in the eastern Pacific Ocean from the Galapagos Islands and Chile north to the Gulf of California, and along the Pacific coast to at least Oregon Migratory movements have been studied less intensely in olive ridleys than other species of marine turtles, but they are believed to use the coastal waters of over 80 countries. Historically, this species has been widely regarded as the most abundant sea turtle in the world. More than one million olive ridleys were commercially harvested off the coasts of Mexico in 1968 alone.

The population of Pacific Mexico was estimated to be at least 10 million prior to the era of mass exploitation. More recently, the global population of annual nesting females has been reduced to about two million by 2004, and was further reduced to 852, 550 by 2008. This indicated a dramatic decrease of 28 to 32% in the global population within only one generation (i.e., 20 years).

The olive ridley sea turtles are considered the most abundant, yet globally they have declined by more than 30% from historic levels. These turtles are considered endangered because of their few remaining nesting sites in the world. The eastern Pacific turtles have been found to range from Baja California, Mexico, to Chile. Pacific olive ridleys nest around Costa Rica, Mexico, Nicaragua, and the northern Indian Ocean; the breeding colony in Mexico was listed as endangered in the US on July 28, 1978.

Nesting grounds

Olive ridley turtles are best known for their behavior of synchronized nesting in mass numbers, termed arribadas. Interestingly, females return to the very same beach from where they first hatched, to lay their eggs. In the Indian Ocean, the majority of olive ridleys nest in two or three large groups near Gahirmatha in Odisha. The coast of Odisha in India is the largest mass nesting site for the olive ridley, followed by the coasts of Mexico and Costa Rica. In 1991, over 600, 000 turtles nested along the coast of Odisha in one week. Nesting occurs elsewhere along the Coromandel Coast and Sri Lanka, but in scattered locations. However, olive ridleys are considered a rarity in most areas of the Indian Ocean.

They are also rare in the western and central Pacific, with known arribadas occurring only within the tropical eastern Pacific, in Central America and Mexico. In Costa Rica, they occur at Nancite and Ostional beaches. Two active arribadas are in Nicaragua, Chacocente and La Flor, with a small nesting ground in Pacific Panama. Historically, several arribadas were in Mexico, yet only one remains at Playa Escobilla in Oaxaca.

Although olive ridleys are famed for their arribadas, many of the nesting grounds can only support relatively small to moderate-sized aggregations (about 1, 000 nesting females). The overall contribution and importance of these nesting beaches to the population may be underestimated by the scientific community.

Foraging grounds

Some of the olive ridley's foraging grounds near southern California are contaminated due to sewage, agricultural runoff, pesticides, solvents, and industrial discharges. These contaminants have been shown to decline the productivity of the benthic community, which negatively affects these turtles, which feed from these communities. The increasing demand to build marinas and docks near Baja California and southern California are also negatively affecting the olive ridleys in these areas, where an increase in oil and gas will be released into these sensitive habitats. Another threat to these turtles are power plants, which have documented juvenile and subadult turtles becoming entrained and entrapped within the saltwater cooling intake systems.

Taxonomy

The olive ridley was first described as Testudo mydas minor, Suckhow, 1798. It was later renamed Chelonian olivacea, Eschscholtz, 1829, and eventually Lepidochelys olivacea Fitzinger, 1843. Because Eschscholtz was the first to propose the specific epithet olivacea, though, he was credited with the valid name Lepidochelys olivacea Eschscholtz, 1829.

The genus name is derived from the Greek words lepidos, meaning scale, and chelys, which translates to turtle. This could possibly be a reference to the supernumerary costal scute counts characteristic of this genus. The etymology of the English vernacular name olive is somewhat easier to resolve, as its carapace is olive green in color. However, the origin of ridley is still somewhat unclear. Lepidochelys is the only genus of sea turtles containing more than one extant species: L. olivacea and the closely related L. kempii (Kemp's ridley).

Reproduction

Mating is often assumed to occur in the vicinity of nesting beaches, but copulating pairs have been reported over 1, 000 km from the nearest beach. Research from Costa Rica revealed the number of copulating pairs observed near the beach could not be responsible for the fertilization of the tens of thousands of gravid females, so a significant amount of mating is believed to have occurred elsewhere at other times of the year.

The Gahirmatha Beach in Kendrapara district of Odisha (India), which is now a part of the Bhitarkanika Wildlife Sanctuary, is the largest breeding ground for these turtles. The Gahirmatha Marine Wildlife Sanctuary, which bounds the Bhitarkanika Wildlife Sanctuary to the east, was created in September 1997, and encompasses Gahirmatha Beach and an adjacent portion of the Bay of Bengal. Bhitarkanika Mangroves were designated a Ramsar Wetland of International Importance in 2002. It is the world's largest known rookery of Olive Ridley sea turtles. Apart from Gahirmatha rookery, two other mass nesting beaches have been located which are on the mouth of rivers Rushikulya and Devi. The spectacular site of mass congregation of Olive Ridley sea turtles for mating and nesting enthralls both the scientists and the nature lovers throughout the world.

Olive Ridley sea turtles migrate in huge numbers from the beginning of November, every year, for mating and nesting along the coast of Orissa. Gahirmatha coast has the annual nesting figure between one hundred to five hundred thousand, each year. there has been decline in the population of these turtles in the recent past due to mass mortality. Olive Ridley sea turtle has found place in Schedule - I of Indian Wildlife (Protection) Act, 1972 (amended 1991). All the species of sea turtles in the coastal water of Orissa are listed as "vulnerable" as per IUCN Red Data Book. The sea turtles are protected under the 'Migratory Species Convention' and CITES (Convention of International Trade on Wildlife Flora and Fauna). India is a signatory nation to all these conventions. The 'Homing' characteristics of the Ridley sea turtles make them more prone to mass casualty. The voyage to the natal nesting beaches is the dooming factor for the sea turtles. Since Gahirmatha coast serves as the natal nesting beach for millions of turtles, it has immense importance on turtle conservation.

Olive ridleys generally begin to aggregate near nesting beaches about two months before nesting season, although this may vary throughout its range. In the eastern Pacific, nesting occurs throughout the year, with peak nesting events (arribadas) occurring between September and December. Nesting beaches can be characterized as relatively flat, midbeach zone, and free of debris. Beach fidelity is common, but not absolute. Nesting events are usually nocturnal, but diurnal nesting has been reported, especially during large arribadas. Exact age of sexual maturity is unknown, but this can be somewhat inferred from data on minimum breeding size. For example, the average carapace length of nesting females (n = 251) at Playa Nancite, Costa Rica was determined to be 63.3 cm, with the smallest recorded at 54.0 cm. Females can lay up to three clutches per season, but most will only lay one or two clutches. The female will remain near shore for the internesting period, which is about one month. Mean clutch size varies throughout its range and decreases with each nesting attempt.

A mean clutch size of 116 (30–168 eggs) was observed in Surinam, while nesting females from the eastern Pacific were found to have an average of 105 (74–126 eggs). The incubation period is usually between 45 and 51 days under natural conditions, but may extend to 70 days in poor weather conditions. Eggs incubated at temperatures of 31 to 32 °C will produce only females; eggs incubated at 28 °C or less will produce solely males; and incubation temperatures of 29 to 30 °C will produce a mixed sex clutch. Hatching success can vary by beach and year, due to changing environmental conditions and rates of nest predation.

Habitat

Most observations are typically within 15 km of mainland shores in protected, relatively shallow marine waters (22–55 m deep). Olive ridleys are occasionally found in open waters. The multiple habitats and geographical localities used by this species vary throughout its life cycle. More research is needed to acquire data on and use of pelagic habitats.

Feeding

The olive ridley is predominantly carnivorous, especially in immature stages of the life cycle. Animal prey consists of protochordates or invertebrates, which can be caught in shallow marine waters or estuarine habitats. Common prey items include jellyfish, tunicates, sea urchins, bryozoans, bivalves, snails, shrimp, crabs, rock lobsters, and sipunculid worms. Additionally, consumption of jellyfish and both adult fish (e.g. Sphoeroides) and fish eggs may be indicative of pelagic (open ocean) feeding. The olive ridley is also known to feed on filamentous algae in areas devoid of other food sources. Captive studies have indicated some level of cannibalistic behavior in this species.

Threats

Known predators of olive ridley eggs include raccoons, coyotes, feral dogs and pigs, opossums, coatimundi, caimans, ghost crabs, and the sunbeam snake. Hatchlings are preyed upon as they travel across the beach to the water by vultures, frigate birds, crabs, raccoons, coyotes, iguanas, and snakes. In the water, hatchling predators most likely include oceanic fishes, sharks, and crocodiles. Adults have relatively few known predators, other than sharks, and killer whales are responsible for occasional attacks. Females are often plagued by mosquitos during nesting. Humans are still listed as the leading threat to L. olivacea, responsible for unsustainable egg collection, slaughtering nesting females on the beach, and direct harvesting adults at sea for commercial sale of both the meat and hides.

Other major threats include mortality associated with boat collisions, and incidental takes in fisheries. Trawling, gill nets, ghost nests, longline fishing, and pot fishing, have significantly affected olive ridley populations, as well as other species of marine turtles. Between 1993 and 2003, more than 100, 000 olive ridley turtles were reported dead in Odisha, India from fishery-related practices. In addition, entanglement and ingestion of marine debris is listed as a major threat for this species. Coastal development, natural disasters, climate change, and other sources of beach erosion have also been cited as potential threats to nesting grounds. Additionally, coastal development also threatens newly hatched turtles through the effects of light pollution. Hatchlings which use light cues to orient themselves to the sea are now misled into moving towards land, and die from dehydration or exhaustion, or are killed on roads.

However, the greatest single cause of olive ridley egg loss results from arribadas, in which the density of nesting females is so high, previously laid nests are inadvertently dug up and destroyed by other nesting females. In some cases, nests become cross-contaminated by bacteria or pathogens of rotting nests. For example, in Playa Nancite, Costa Rica, only 0.2% of the 11.5 million eggs produced in a single arribada successfully hatched. Although some of this loss resulted from predation and high tides, the majority was attributed to conspecifics unintentionally destroying existing nests. The extent to which arribadas contribute to the population status of olive ridleys has created debate among scientists. Many believe the massive reproductive output of these nesting events is critical to maintaining populations, while others maintain the traditional arribada beaches fall far short of their reproductive potential and are most likely not sustaining population levels. In some areas, this debate eventually led to legalizing egg collection.

Economic importance

Historically, the olive ridley has been exploited for food, bait, oil, leather, and fertilizer. The meat is not considered a delicacy; the egg, however, is esteemed everywhere. Egg collection is illegal in most of the countries where olive ridleys nest, but these laws are rarely enforced. Harvesting eggs has the potential to contribute to local economies, so the unique practice of allowing a sustainable (legal) egg harvest has been attempted in several localities. Numerous case studies have been conducted in regions of arribadas beaches to investigate and understand the socioeconomic, cultural, and political issues of egg collection. Of these, the legal egg harvest at Ostional, Costa Rica, has been viewed by many as both biologically sustainable and economically viable. Since egg collection became legal in 1987, local villagers have been able to harvest and sell around three million eggs annually. They are permitted to collect eggs during the first 36 hours the nesting period, as many of these eggs would be destroyed by later nesting females. Over 27 million eggs are left unharvested, and villagers have played a large role in protecting these nests from predators, thereby increasing hatching success.

Most participating households reported egg harvesting as their most important activity, and profits earned were superior to other forms of available employment, other than tourism. The price of Ostional eggs was intentionally kept low to discourage illegal collection of eggs from other beaches. The Ostional project retained more local profits than similar egg collection projects in Nicaragua, but evaluating egg harvesting projects such as this suffers from the short timeline and site specificity of findings. In most regions, illegal poaching of eggs is considered a major threat to olive ridley populations, thus the practice of allowing legal egg harvests continues to attract criticism from conservationists and sea turtle biologists. Plotkin's Biology and Conservation of Ridley Sea Turtles, particularly the chapter by Lisa Campbell titled "Understanding Human Use of Olive Ridleys", provides further research on the Ostional harvest (as well as other harvesting projects). Scott Drucker's documentary, Between the Harvest, offers a glimpse into this world and the debate surrounding it.

Conservation status

The olive ridley is classified as Vulnerable according to the International Union for Conservation of Nature and Natural Resources (IUCN), and is listed in Appendix I of CITES. These listings were largely responsible for halting the large scale commercial exploitation and trade of olive ridley skins. The Convention on Migratory Species and the Inter-American Convention for the Protection and Conservation of Sea Turtles have also provided olive ridleys with protection, leading to increased conservation and management for this marine turtle. National listings for this species range from Endangered to Threatened, yet enforcing these sanctions on a global scale has been unsuccessful for the most part. Conservation successes for the olive ridley have relied on well-coordinated national programs in combination with local communities and nongovernment organizations, which focused primarily on public outreach and education.Arribada management has also played a critical role in conserving olive ridleys. Lastly, enforcing the use of turtle excluder devices in the shrimp trawling industry has also proved effective in some areas. Globally, the olive ridley continues to receive less conservation attention than its close relative, the Kemp's ridley (L. kempii).

Several projects worldwide seek to preserve the olive ridley sea turtle population. For example, in Nuevo Vallarta, Mexico, when the turtles come to the beach to lay their eggs, some of them are relocated to a hatchery, where they have a much better chance to survive. If the eggs were left on the beach, they would face many threats such as getting washed away with the tide or getting poached. Once the eggs hatch, the baby turtles are carried to the beach and released.

Another major project, in India involved in preserving the olive ridley sea turtle population was carried out in Chennai, where the Chennai wildlife team collected close to 10, 000 Olive Ridley turtle eggs along the Marina coast, of which 8, 834 hatchlings were successfully released into the sea in a phased manner.

This article uses material from Wikipedia released under the Creative Commons Attribution-Share-Alike Licence 3.0. Eventual photos shown in this page may or may not be from Wikipedia, please see the license details for photos in photo by-lines.

Scientific classification

Kingdom
Animalia
Phylum
Chordata
Class
Reptilia
Order
Testudines
Family
Cheloniidae
Genus
Lepidochelys
Species
Lepidochelys olivacea

Common names

  • English:
    • Olive ridley
    • Pacific ridley
  • French:
    • Ridley du Pacifique
    • Tortue bâtarde
    • Tortue de Ridley
    • Tortue Olivâtre
  • Thai:
    • เตาหญาตาแดง (Dtao ya ta daeng)
    • เตาสังกะสี (Dtao sangasi hua kon)

Synonyms

  • Chelonia multicustata, René Marquez M. (1990)
  • Lepidochelys olivaceas, Kesteven (ex errore) (1969)
  • Lepidochelis olivacea, Duniesky Ríos Tamayo (1962)
  • Caouana rueppellii, Robert Mertens & Heinz Wermuth (1961)
  • Lepidochelys olivacea remivaga, Karl Patterson Schmidt (1953)
  • Caretta olivacea olivacea, Robert Mertens (1952)
  • Lepidochelys olivacea olivacea, Paul E. Pieris Deraniyagala (1943)
  • Caretta caretta var. olivacea, Paul E. Pieris Deraniyagala (1930)
  • Caretta remivaga, Oliver Perry Hay (1908)
  • Thalassochelys controversa, Rodolfo Amando Philippi (1899)
  • Chelonia olivaccea, Jacobo Reyes-Velasco (1892)
  • Thalassochelys tarapacona, George Albert Boulenger (1889)
  • Thalassiochelys tarapacona, Rodolfo Amando Philippi (1887)
  • Thalassochelys tarapacana, Rodolfo Amando Philippi (1887)
  • Cephalochelys oceanica, John Edward Gray (1873)
  • Chelonia dubia, Pieter Bleeker (1864)
  • Lepidochelys dussumieri, Charles Frédéric Girard (1858)
  • Lepidochelys olivacea, Charles Frédéric Girard (1858)
  • Chelonia dussumieri, Jean Louis Rodolphe Agassiz (1857)
  • Chelonia polyaspis, Pieter Bleeker (1857)
  • Caouana dessumierii, Malcolm Arthur Smith (1849)
  • Caouana olivacea, John Edward Gray (1844)
  • Caouana ruppellii, John Edward Gray (1844)
  • Chelonia subcarinata, Wilhelm Peter Eduard Simon Rüppell (1844)
  • Thalassochelys (Lepidochelys) olivacea, Leopold Fitzinger (1843)
  • Chelonia dussumierii, André Marie Constant Duméril & Gabriel Bibron (1835)
  • Caretta olivacea, Wilhelm Peter Eduard Simon Rüppell (1835)
  • Chelonia caretta var. olivacea, John Edward Gray (1831)
  • Chelonia olivacea, Johann Friedrich von Eschscholtz (1829)
  • Chelonia multiscutata, Heinrich Kuhl (1820)
  • Testudo mydas minor, Georg Adolf Suckow (1798)

Conservation status

Vulnerable (IUCN3.1)

Vulnerable (IUCN3.1)

Distribution map of Olive ridley sea turtle, Lepidochelys olivacea in Thailand

Range map of Lepidochelys olivacea in Thailand

Important note; our range maps are based on limited data we have collected. The data is not necessarily accurate or complete.

Special thanks to Ton Smits, Parinya Pawangkhanant, Ian Dugdale and many others for their contribution for range data.

Contribute or get help with ID

Please help us improving our species range maps. To add a new location to the range map we need a clear image of the specimen you have encountered. No problem if you do not know the species, we will do our best to identify it for you.

For the location, please provide the district name or the national park/ wildlife sanctuary name.

Please post your images to our Thai Species Identification Help group on Facebook.